Where discoveries are delivered.℠

External Resources:

Section 'Sub' Navigation:

Publications

Recent Publications

De Jaco, A., Comoletti, D., Kovarik, Z., Gaietta, G., Radic, Z., Lockridge, O., Ellisman, M.H. and Taylor, P. A Mutation Linked with Autism Reveals a Common Mechanism of Endoplasmic Reticulum Retention for the ?,?-Hydrolase Fold Protein Family. J. Biol. Chem., 281:9667-9676 (2006).

Shi, J., Koeppe, J.R., Komives, E.A. and Taylor, P. Ligand-induced Conformational Changes in the Acetylcholine-binding Protein Analyzed by Hydrogen-Deuterium Exchange Mass Spectrometry. J. Biol. Chem., 281:12170-12177 (2006).

Bui, J.M., Radic, Z., Taylor, P. and McCammon, J.A. Conformational Transitions in Protein-Protein Association: Binding of Fasciculin-2 to Acetylcholinesterase. Biophysical Journal, 90:3280-3287 (2006).

Kovarik, Z., Ciban, N., Radic, Z., Simeon-Rudolf, V. and Taylor, P. Active Site Mutant Acetylcholinesterase Interactions With 2-PAM, HI-6, and DDVP. Biochem. Biophys. Res. Commun., 342:973-978 (2006). Valle, A., O'Connor, D.T., Taylor, P., Zhu, G., Montgomery, G.W., Slagboom, P.E., Martin, N.G. and Whitfield, J.B. Butyrylcholinesterase: Association With The Metabolic Syndrome And Identification Of 2 Gene Loci Affecting Activity. Clinical Chemistry, 52:1014-1020 (2006).

Talley, T.T., Yalda, S., Ho, K-Y, Tor, Y., Soti, F.S., Kem, W.R. and Taylor, P. Spectroscopic Analysis of Benzylidene Anabaseine Complexes with Acetylcholine Binding Proteins as Models for Ligand-Nicotinic Receptor Interactions. Biochemistry, 45:8894-8902 (2006).

Talley, T.T., Olivera, B.M., Han, K-H., Christensen, S.B., Dowell, C., Tsigelny, I., Ho, K-Y., Taylor, P. and McIntosh, J.M. a-Conotoxin OmIA Is a Potent Ligand For the Acetylcholine-binding Protein As Well As a3β2 and a7 Nicotinic Acetylcholine Receptors. J. Biol. Chem., 281:24678-24686 (2006).

Bourne, Y., Radic, Z., Sulzenbacher, G., Kim, E., Taylor, P. and Marchot, P. Substrate and Product Trafficking through the Active Center Gorge of Acetylcholinesterase Analyzed By Crystallography and Equilibrium Binding. J. Biol. Chem., 281:29256-29267 (2006).

Comoletti, D., Flynn, R.E., Boucard, A.A., Demeler, B., Schirf, V., Shi, J., Jennings, L.L., Newlin, H.R., Südhof, T.C. and Taylor, P. Gene Selection, Alternative Splicing, and Post-translational Processing Regulate Neuroligin Selectivity for ?-Neurexins. Biochemistry, 45:12816-12827 (2006).

Gao, F., Mer, G., Tonelli, M., Hansen, S.B., Burghardt, T.P., Taylor, P. and Sine, S.M. Solution NMR of Acetylcholine Binding Protein Reveals Agonist-Mediated Conformational Change of the C-loop. Mol. Pharmacol., 70:1230-1235 (2006).

Hibbs, R.E., Radic, Z., Taylor, P. and Johnson, D.A. Influence of Agonists and Antagonists on the Segmental Motion of Residues near the Agonist Binding Pocket of the Acetylcholine-binding Protein. J. Biol. Chem., 281:39708-39718 (2006).

Kang, T.S., Radic, Z., Talley, T.T., Jois, S.D.S., Taylor, P. and Kini, R.M. Protein Folding Determinants: Structural Features Determining Alternative Disulfide Pairing in ? and ?/?-Conotoxins. Biochemistry, 46:3338-3355 (2007).

Tomizawa, M., Maltby, D., Medzihradszky, K.F., Zhang, N., Durkin, K.A., Presley, J., Talley, T.T., Taylor, P., Burlingame, A.L., Casida, J. E. Defining Nicotinic Agonist Binding Surfaces Through Photoaffinity Labeling. Biochemistry, In Press (2007).

Hansen, S.B. and Taylor, P. Galanthamine and Non-competitive Inhibitor Binding to Ach-binding Protein: Evidence for a Binding Site on Non a-subunit Interfaces of Heteromeric Neuronal Nicotinic Receptors. J. Mol.Biol., 369:895-901 (2007).

Tomizawa, Motohiro., Talley, T.T., Maltby, David., Durkin, A. Kathleen., Medzihradszky, F. Katalin., Burlingame, L. Alma., Taylor, P. and Casida, E. John. Mapping the Elusive Neonicotinoid Binding Site. Proc. Nat'l. Acad. Sci., 104:9075-9080 (2007).

Comoletti, D., Grishaev, A., Whitten, E. A, Tsigelny, I., Taylor, P. and Trewhella, J. Synaptic Arrangement of the Neuroloigin/β-Neurexin Complex Revealed by X-ray and Neutron Scattering. Structure., 15:693-705 (2007), Article.

Girard, E., Bernard, V., Camp, S., Taylor, P., Krejci, E. and Molgó, J. Remodeling of the Neuromuscular Junction in Mice With Deleted Exons 5 and 6 of Acetylcholinesterase. J. Mol., Neuro., 30:99-100 (2007).

Taylor, P., Talley, T.T., Radic, Z., Hansen, S.B., and Shi, J. Structure-guided Drug Design: Conferring Selectivity Among Neuronal Nicotinic Receptor and Acetylcholine Binding Protein Subtypes. Biochemical Pharmacology, In Press, 2007.

Tomizawa, M., Maltby, D., Medzihradszky, K. F., Zhang, N., Durkin, K.A., Presley, J., Talley, T.T., Taylor, P., Burlingame, A.L., and Casida, J. E. Defining Nicotinic Agonist Binding Surfaces through Photoaffinity Labeling. Biochemistry, 46:8798-8806 (2007).

Selected Peer Reviewed Publications (2003-Present)

  1. Bourne, Y., Taylor, P., Radic, Z. and Marchot, P. Structural insights into ligand interactions at the acetylcholi-nesterase peripheral anionic site. The EMBO J., 2003. 22:1-12.
  2. Gao, F., Bren, N., Little, A., Wang, H-L., Hansen, S.B., Talley, T., Taylor, P. and Sine, S.M. Curariform antagonists bind in different orientations to acetylcholine-binding protein. J. Biol. Chem., 2003. 278:23020-23026.
  3. Shi, J., Taylor, P. and Johnson, D.A. Nanosecond Dynamics of Mouse Acetylcholinesterase Cys69 - Cys96 Omega Loop. J. Biol. Chem., 2003. 278:30905-30911.
  4. Kovarik, Z., Radic, Z., Berman, H.A., Simeon-Rudolf, V., Reiner, E. and Taylor, P. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Biochem. J., 2003. 373:33-40.
  5. Luo, C., Leader, H., Maxwell, D.M., Taylor, P., Doctor, B.P. and Ashima, S. Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase. Biochem. Pharmacol., 2003. 66:387-392.
  6. Jennings, L.L., Malecki, M., Komives, E.A. and Taylor, P. Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry. Biochemistry, 2003. 42:11083-11091.
  7. Khan, I., Osaka, H., Stanislaus, S., Calvo, R.M., Deernick, T., Yaksh, T.L. and Taylor, P. Nicotinic acetylcholine receptor distribution in relation to spinal neurotransmission pathways. J. Comp. Neurol., 2003. 467:44-59.
  8. Henchman, R.H., Wang, H-L., Sine, S.M., Taylor, P. and McCammon, J.A. Asymmetric structural motions of the homomeric alpha7 nicotinic receptor ligand binding domain revealed by molecular dynamics simulation. Biophys. J., 2003. 85:3007-3018.
  9. Comoletti, D., Flynn, R., Jennings, L.L., Chubykin, A., Matsumura, T., Hasegawa, H., Sudhof, T.C. and Taylor, P. Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1beta. J. Biol. Chem., 2003. 278:50497-50505.
  10. George, K.M., Schule, T., Sandoval, L.E., Jennings, L., Taylor, P. and Thompson, C.M. Differentiation between acetylcholinesterase and the organophosphate-inhibited form using antibodies and the correlation of antibody recognition with reactivation mechanism and rate. J. Biol. Chem., 2003. 278:45512-45518.
  11. Saxena, A., Fedorko, J.M., Vinayaka, C.R., Medhekar, R., Radic, Z., Taylor, P., Lockridge, O. and Doctor, B.P. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases. Eur. J. Biochem., 2003. 270:4447-4458.
  12. Hoffman, R.C., Jennings, L.L., Tsigelny, I., Comoletti, D., Flynn, R.E., Sudhof, T.C. and Taylor, P. Structural characterization of recombinant soluble rat neuroligin 1: mapping of secondary structure and glycosylation by mass spectrometry. Biochemistry, 2004. 43:1496-1506.
  13. Boyd, A.E., Dunlop, C.S., Wong, L., Radic, Z., Taylor, P. and Johnson, D.A. Nanosecond dynamics of acetylcholinesterase near the active center gorge. J. Bio. Chem., 2004. 279:22612-26618.
  14. Kovarik, Z., Radic, Z., Berman, H.A., Simeon-Rudolf, V., Reiner, E. and Taylor, P. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates. Biochemistry, 2004. 43:3222-3229.
  15. Bourne, Y., Kolb, H.C., Radic, Z., Sharpless, K.B., Taylor, P. and Marchot, P. Freeze-frame inhibitors capture acetylcholinesterase in a unique gating conformation. Proc. Natl. Acad. Sci., 101:1449-1454 (2004).
  16. Comoletti, D., De Jaco, A., Jennings, L.L., Flynn, R.E., Gaietta, G., Tsigelny, I., Ellisman, M.H. and Taylor, P. The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J. Neurosci., 2004. 24:4889-4893.
  17. Taylor, P., Hansen, S.B., Talley, T.T., Hibbs, R.E. and Radic, Z. Contemporary paradigms for cholinergic ligand design guided by biological structure. Bioorg. Med. Chem. Lett., 2004. 14:1875-1877.
  18. Hibbs, R.E., Talley, T.T. and Taylor, P. Acrylodan-conjugated cysteine side chains reveal conformational state and ligand site locations of the acetylcholine -binding protein. J. Biol. Chem., 279:28483-28491 (2004).
  19. Hansen, S.B., Talley, T.T., Radic, Z. and Taylor, P. Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica. J. Biol. Chem. 2004. 279:24197-24202.
  20. Bouzat, C., Gumilar, F., Spitzmaul, G., Wang, H-L., Rayes, D., Hansen, S.B., Taylor, P. and Sine, S.M. Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature, 2004. 430:896-900.
  21. Manetsch, R., Krasinski, A., Radic, Z., Raushel, J., Taylor, P., Sharpless, K.B. and Kolb, H.C. In Situ click chemistry: enzyme inhibitors made to their own specifications. J. Amer. Chem. Soc., 2004. 126:12809-12818.
  22. Khan, I., Wennerholm, M., Singletary, E., Polston, K., Zhang, L., Deerinck, T., Yaksh, T.L. and Taylor, P. Ablation of primary afferent terminals reduces nicotinic receptor expression and the nociceptive responses to nicotinic agonists in the spinal cord. J. Neurocytol., 2004. 33:543- 556.
  23. Zhang, D., Suen, J., Zhang, Y., Song, Y., Radic, Z., Taylor, P., Holst, M.J., Bajaj, C., Baker, N.A. and McCammon, J.A. Tetrameric Mouse Acetylcholinesterase: Continuum Diffusion Rate Calculations by Solving the Steady-State Smoluchowski Equation Using Finite Element Methods. Biophysical Journal, 2005. 88:1659-1665.
  24. Gao, F., Bren, N., Burghardt, T.P., Hansen, S., Henchman, R.H., Taylor, P., McCammon, J.A. and Sine, S.M. Agonist-mediated conformational changes in acetylcholine-binding protein revealed by simulation and intrinsic tryptophan fluorescence. J. Biol. Chem., 2005. 280:8443- 8451.
  25. Henchman, R.H., Wang, H-L., Sine, S.M., Taylor, P. and McCammon, J.A. Ligand-induced conformational change in the a7 nicotinic receptor ligand binding domain. Biophysical Journal, 2005. 88:2564-2576.
  26. uction by Neuroligins: Effect of a Neuroligin Mutation Associated with Autism. J. Biol. Chem., 2005, 280:22365-22374.
  27. Bourne, Y., Talley, T.T., Hansen, S.B., Taylor, P. and Marchot, P. Crystal Structure of a Cbtx- AChBP complex reveals essential interactions between snake a-neurotoxins and nicotinic receptors. The EMBO J., 2005. 24:1512-1522.
  28. ection of Lead Compounds by Click Chemistry: Target-Guided Optimization of Acetylcholinesterase Inhibitors. J. Amer. Chem. Soc., 2005. 127:6686-6692. 29. Hansen, S.B., Sulzenbacher, G., Huxford, T., Marchot, P., Taylor, P. and Bourne, Y. Structures of Aplysia AChBP complexes with agonists and antagonists reveal distinctive binding interfaces and conformations. The EMBO J., 2005. 24:3635-3646.
  29. Boucard A.A., Chubykin A.A., Comoletti D., Taylor P, and Südhof TC., A Splice-Code for Trans- synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to ?- and ?-Neurexins (2005) Neuron, 48:229-236.
  30. Hibbs, R.E., Johnson, D.A., Shi, J., Hansen, S.B. and Taylor, P. Structural Dynamics of the ?- Neurotoxin-Acetylcholine-Binding Protein Complex: Hydrodynamic and Fluorescence Anisotropy Decay Analyses. Biochemistry, 44:16602-16611 (2005).
  31. De Jaco, A., Comoletti, D., Kovarik, Z., Gaietta, G., Radic, Z., Lockridge, O., Ellisman, M.H. and Taylor, P. A Mutation Linked With Autism Reveals A Common Mechanism of Endoplasmic Reticulum Retention For the ?,? Hydrolase-Fold Protein Family. J. Biol. Chem., 281:9667-9676 (2006).
  32. Shi, J., Koeppe, J.R., Komives, E.A. and Taylor, P. Ligand-Induced Conformational Changes in the Acetylcholine Binding Protein Analyzed by Hydrogen-Deuterium Exchange Mass Spectrometry. J. Biol. Chem., 281:12170-12177 (2006).
  33. Bui, J., Radic, Z., Taylor, P. and McCammon, J.A. Conformational Transitions in Protein- Protein Association: Binding of Fasciculin-2 to Acetylcholinesterase. Biophysical Journal, 90:3280-3287 (2006).
  34. Kovarik, Z., Ciban, N., Radic, Z., Simeon-Rudolf, V. and Taylor, P. Active Site Mutant Acetylcholinesterase Interactions With 2-PAM, HI-6, and DDVP. Biochem. Biophy. Res. Comm., 342:973-978 (2006).
  35. Valle, A., O'Connor, D.T., Taylor, P., Zhu, G., Montgomery, G.W., Slagboom, P.E., Martin, N.G. and Whitfield, J.B. Butyrylcholinesterase: Association With The Metabolic Syndrome And Identification Of 2 Gene Loci Affecting Activity. Clinical Chemistry, 52:1014-1020 (2006).
  36. Talley, T.T., Yalda, S., Ho, K-Y, Tor, Y., Soti, F.S., Kem, W.R. and Taylor, P. Spectroscopic Analysis of Benzylidene Anabaseine Complexes with Acetylcholine Binding Proteins as Models for Ligand-Nicotinic Receptor Interactions. Biochemistry, 45:8894-8902 (2006).
  37. Talley, T.T., Olivera, B.M., Han, K-H., Christensen, S.B., Dowell, C., Tsigelny, I., Ho, K-Y., Taylor, P. and McIntosh, J.M. a-Conotoxin OmIA Is a Potent Ligand For the Acetylcholine-binding Protein As Well As a3β2 and a7 Nicotinic Acetylcholine Receptors. J. Biol. Chem., 281:24678-24686 (2006).
  38. Bourne, Y., Radic, Z., Sulzenbacher, G., Kim, E., Taylor, P. and Marchot, P. Substrate and Product Trafficking through the Active Center Gorge of Acetylcholinesterase Analyzed By Crystallography and Equilibrium Binding. J. Biol. Chem., 281:29256-29267 (2006).
  39. Comoletti, D., Flynn, R.E., Boucard, A.A., Demeler, B., Schirf, V., Shi, J., Jennings, L.L., Newlin, H.R., Südhof, T.C. and Taylor, P. Gene Selection, Alternative Splicing, and Post-translational Processing Regulate Neuroligin Selectivity for ?-Neurexins. Biochemistry, 45:12816-12827 (2006). 41. Gao, F., Mer, G., Tonelli, M., Hansen, S.B., Burghardt, T.P., Taylor, P. and Sine, S.M. Solution NMR of Acetylcholine Binding Protein Reveals Agonist-Mediated Conformational Change of the C-loop. Mol. Pharmacol., 70:1230-1235 (2006).
  40. Hibbs, R.E., Radic, Z., Taylor, P. and Johnson, D.A. Selective Agonist Mobilization of Loop F Residues of the Acetylcholine Binding Protein Suggests an Intersubunit Activation Pathway For the Nicotinic Receptor. J. Biol. Chem., 281:39708-39718 (2006).
  41. Kang, T.S., Radic, Z., Talley, T.T., Jois, S.D.S., Taylor, P. and Kini, R.M. Protein Folding Determinants: Structural Features Determining Alternative Disulfide Pairing in ? and ?/?- Conotoxins. Biochemistry, 46:3338-3355 (2007).
  42. Hansen, B. Scott and Taylor, P. Galanthamine and non-competitive inhibitor binding to Ach- binding protein: evidence for a binding site on non a-subunit interfaces of heteromeric neuronal nicotinic receptors. J. Mol. Biol. Doi:10,1016/J. Omb 2007.03.067 (2007).
  43. Comoletti, Davide., Grishaev, Alexander., Whitten, E. Andrew., Tsigelny, Igor., Taylor, P. and Trewhella, Jill Synaptic Arrangement of the Neuroloigin/β-Neurexin Complex Revealed by X-ray and Neutron Scattering. Structure., 15:693-705 (2007), Cover Issue.