Pharmacogenomics Overview

Jill S. Bates, Pharm.D., M.S., BCOP, FASHP
National PHASER Pharmacy Program Manager
Learning Objectives

• Evaluate the clinical utility of pharmacogenomics
• Identify pharmacogenomics implementation challenges
• Describe strategies for stakeholder engagement in pharmacogenomics implementation
Quadruple Aim

• Better health
• Better patient experience
• Lower costs
• Improved clinician satisfaction

Pharmacogenomics (PGx)

• The study of how a person’s genetic makeup can affect their response to a drug.
Gene expression = Protein synthesis

- DNA
- mRNA
- Ribosome
- Proteins that make enzymes, transporters, and targets
- Transcription
- Translation
A drug-gene interaction is said to occur when the disposition or effects of a drug are altered by a protein that is derived from variation in its gene.

Drug-gene interactions can involve proteins that function as drug metabolizing enzymes, transporters, or targets.
PGx and ADME

A: absorption
D: distribution
M: metabolism
E: elimination

Non-specific binding in most tissues
Site of action

Free Drug
Protein-bound Drug

Drug Metabolizing Enzymes and Reaction-Phenotyping Carl D Davis
(present5.com) adapted from and accessed on 5/4/22.
Approaches to PGx

<table>
<thead>
<tr>
<th>PGx Testing</th>
<th>PGx- informed Prescription</th>
<th>Medication Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>Group #1: “Pre-emptive PGx”</td>
<td>Group #2: “Reactive PGx”</td>
</tr>
<tr>
<td></td>
<td>Any Veteran may benefit</td>
<td>Patients with high-risk diagnoses who are expected to (or have recently started) high-risk medications:</td>
</tr>
</tbody>
</table>
| | 1 in 2 Veterans will be prescribed an affected medication in the long-term. | — Clopidogrel
— SSRIs
— Fluoropyrimidine
— Opioids
— Thiopurines |
| | **Group #3: “Diagnostic PGx”** | |
| | | Patients with sub-optimal response to medicine on the PHASER panel: |
| | | — Lack of therapeutic response (e.g., depression symptoms)
— Treatment limiting side-effects (e.g., myalgias with statins) |
What is Clinical Utility?

- The ability of a screening or diagnostic test to prevent or ameliorate adverse health outcomes
- Broad---includes ethical, legal, and social implications
- The clinical utility of a test depends on effective access to appropriate interventions

PGx-Associated Clinical Outcomes

- Therapeutic choice: the use of test results in clinical management of an individual with a diagnosed disorder

- Outcomes: morbidity, mortality, quality of life, societal impacts, cost effectiveness

Perspectives

- Hypothesis generating (e.g., genome wide association study) versus hypothesis testing (e.g., candidate gene association study)
- Single drug-gene pair versus Multi-gene panel
- Population heterogeneity

Many PGx studies are frequently supplemental, often retrospective (i.e., prospective hypothesis tested in a retrospective cohort).

- Varying genotyping methodologies
- Heterogeneity of phenotypic endpoints
- Environmental impacts (gene by gene interactions, drug-drug-gene interactions, etc.)
- Population stratification

Economic Evaluation of Germline PGx

• Approximately 1 in 6 prescriptions involve high risk pharmacogenomics
• Only about 25% of currently available tests and 20% of tests with likely clinical utility have associated cost-utility data

• PGx cost-effectiveness by indication
 • Cancer
 • Annual patient savings with pharmacogenomics irinotecan dose reduction $272.34
 • Savings of $415 per patient receiving voriconazole for fungal infection
 • Psychiatry
 • Cardiology
 • Geriatric medicine
 • Pain

Select Examples: “High Evidence” Drug-Gene Pairs

- Abacavir and HLA-B (BBW)
- Carbamazepine and HLA-B (BBW)
- Clopidogrel and CYP2C19 (BBW)
- Codeine, tramadol and CYP2D6 (BBW)
- Thiopurines and TPMT/NUDT15
- Fluoropyrimidines and DPYD

BBW= Black Box Warning
Implementation of PGx

- Growing need for germline PGx
 - > 150 individual drugs have FDA-approved pharmacogenomic information included in the drug label
 - On average, 3 actionable PGx variants per patient

- Key elements
 - Evidence
 - Personnel
 - Information technology
 - Reference laboratory
 - Education and Shared Decision-Making plan

Where is the starting line?

- **Plan**
 - Determine the approach (e.g., reactive versus preemptive, germline versus somatic)
 - Identify a drug/gene pair and patient population
 - Determine testing method
 - Create clinical decision support and education

- **Do**
 - Implement

- **Study**
 - Monitor clinical utility and implementation variables

- **Act**
 - Obtain feedback from end users, patients and incorporate into the next drug/gene pair implementation effort
PGx Clinical Implementation Challenges

Economics

PGx Technology

Program sustainability

Provider expertise

PGx Clinical Implementation Challenges

• Economics
 • Reimbursement for genetic testing
 • False reassurance with dropping cost of next generation sequencing (NGS)

• PGx Technology
 • Genotyping and result interpretation
 • Laboratory and workflow challenges
 • Interoperability
 • Electronically structured data and provision of clinical decision support

• Program sustainability
 • Attaining provider buy-in and acceptance
 • PGx is an interprofessional team sport

• Provider expertise
 • Varying levels of provider expertise
 • Lack of self-efficacy and confidence

NGS Impact on Sequencing Cost

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: www.genome.gov/sequencingcostsdata. Accessed [date of access].
Economic Implementation Challenge

- False reassurance with dropping cost of next generation sequencing (NGS)
 - Sample processing and procurement
 - Informatics support and applications
 - Education materials and support
 - Laboratory services
 - Shipping materials and cost
Barriers Identified with PHASER 1.0

- Implementation science-based survey to evaluate pharmacogenomics intervention
- Survey (n= 153), overall response rate 30%
- Top 10 consolidated framework for implementation research (CFIR) Constructs Identified
 1. Evidence strength and quality
 2. Complexity
 3. Knowledge and benefits about the intervention
 4. Self-efficacy
 5. Individual stage of change
 6. Compatibility
 7. Relative priority
 8. Leadership engagement
 9. Available resources
 10. Access to knowledge and information

Olivia Dong, PhD
T32 Genomic Medicine Fellow

Ryanne Wu, MD
Duke Center for Applied Genomics & Precision Medicine
Educating the Workforce

- Qualitative evaluation of 25 physicians revealed that the prospect of receiving unsolicited genomic results raises important concerns
 - Actionability - especially with regard to lack of knowledge
 - Need for clinical decision support
 - Potential patient harm
 - Workflow issues i.e., unreimbursed time
 - Roles of providers responding to unsolicited genomic results

- A survey of pharmacists (n=737) demonstrated disparity in knowledge of general genetics according to years since graduating pharmacy school
 - Mean total positive attitude increased with self-reported level of knowledge of pharmacogenomic testing

PGx Pharmacy Landscape Survey

Survey deployed February 2021
• 674 responses
• Respondents:
 • 71% of respondents have not completed any training in PGx course work
 • 82% have a scope of practice

<table>
<thead>
<tr>
<th>Practice Area</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal medicine</td>
<td>49 (7.3)</td>
</tr>
<tr>
<td>Primary care</td>
<td>232 (34.4)</td>
</tr>
<tr>
<td>Cardiology</td>
<td>13 (1.9)</td>
</tr>
<tr>
<td>Infectious disease</td>
<td>6 (0.9)</td>
</tr>
<tr>
<td>Solid organ transplant</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Mental health</td>
<td>128 (19.0)</td>
</tr>
<tr>
<td>Oncology</td>
<td>54 (8.0)</td>
</tr>
<tr>
<td>Administration</td>
<td>41 (6.1)</td>
</tr>
<tr>
<td>Other</td>
<td>142 (21.1)</td>
</tr>
<tr>
<td>No response</td>
<td>8 (1.2)</td>
</tr>
</tbody>
</table>
Please identify any of the following pharmacogenomics tests that you have utilized as part of your practice?

- Cytogenetics
- RNA testing
- Protein testing
- Inheritable diseases
- Somatic PGx
- Germline PGx
- None

N = 674
<table>
<thead>
<tr>
<th>Orders</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Companion diagnostic matched to a drug prescribed</td>
<td>21 (3%)</td>
<td>517 (78%)</td>
<td>123 (19%)</td>
</tr>
<tr>
<td>Complementary diagnostic matched to a drug prescribed</td>
<td>37 (5%)</td>
<td>524 (80%)</td>
<td>98 (15%)</td>
</tr>
<tr>
<td>Changed medications or adjusted dosing based on germline PGx</td>
<td>75 (11%)</td>
<td>470 (72%)</td>
<td>112 (17%)</td>
</tr>
</tbody>
</table>

N = 674
Which of the following pharmacogenomics resources have you used in practice or are familiar with and could use in practice where applicable?

N = 674
How comfortable are you in performing the following patient care services?

<table>
<thead>
<tr>
<th>Service</th>
<th>Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applying genomic data to optimize medication use for patient care</td>
<td>32</td>
</tr>
<tr>
<td>Educating patients about family history, genomic risk, and PGx test</td>
<td>30</td>
</tr>
<tr>
<td>results as they relate to health behaviors</td>
<td></td>
</tr>
<tr>
<td>Recommend strategies regarding the potential use of handling incidental</td>
<td>26</td>
</tr>
<tr>
<td>findings with PGx test results</td>
<td></td>
</tr>
<tr>
<td>Recommend genomic screening for early detection and diagnosis</td>
<td>24</td>
</tr>
<tr>
<td>Apply PGx drug dosing guidelines in practice and guide healthcare</td>
<td>33</td>
</tr>
<tr>
<td>providers on their appropriate use and interpretation</td>
<td></td>
</tr>
<tr>
<td>Educate patients and healthcare providers about privacy and other</td>
<td>29</td>
</tr>
<tr>
<td>potential concerns with PGx data</td>
<td></td>
</tr>
</tbody>
</table>
Stratified Results by PHASER and Non-PHASER Respondents

1. Comfort applying genomic data to optimize medication use for patient care

Response

Non-Phaser

Phaser

Group
Stratified Results by PHASER and Non-PHASER Respondents

5. Comfort applying PGx dosing guidelines in practice and guiding providers on use and interpretation
Align the Health-system in the Precision Medicine Space

- The Q behind the Q
- Informatics
- Pathology and laboratory services
- Healthsystem priority: pharmacogenomics versus inheritable disease (or both?)
- Definition of ”pharmacogenomics”
 - Germline pharmacogenes
 - Precision oncology
Align the Health System in the Precision Medicine Space

- Infrastructure should support all of precision medicine
 - Cloud computing versus cluster computing?
 - Genomic data infrastructure in electronic health record?
 - Interoperability?
 - Reference laboratories: inhouse or external vendor?
 - Supporting software?
Align the Health System in the Precision Medicine Space

While the cost of sequencing has decreased, infrastructure needs to support continue:

• Cost to the patient - payer coverage of genomic testing
• Cost to store genomic data e.g., cluster versus cloud computing
• Cost of software to support integration of genomics into care e.g., structured data, clinical decision support, interoperability with vendors
• Cost to support biobanking - sample procurement and storage
• Cost for personnel e.g., workforce education, informed consent, building informatics and other infrastructure, etc.
Summary

- Clinical utility---as it relates to pharmacogenomics---is broad and not well defined, making it challenging to assess.
- Costs related to pharmacogenomics implementation often extend beyond testing.
- Access to pharmacogenomics testing impacts both its clinical utility and clinician self-efficacy.