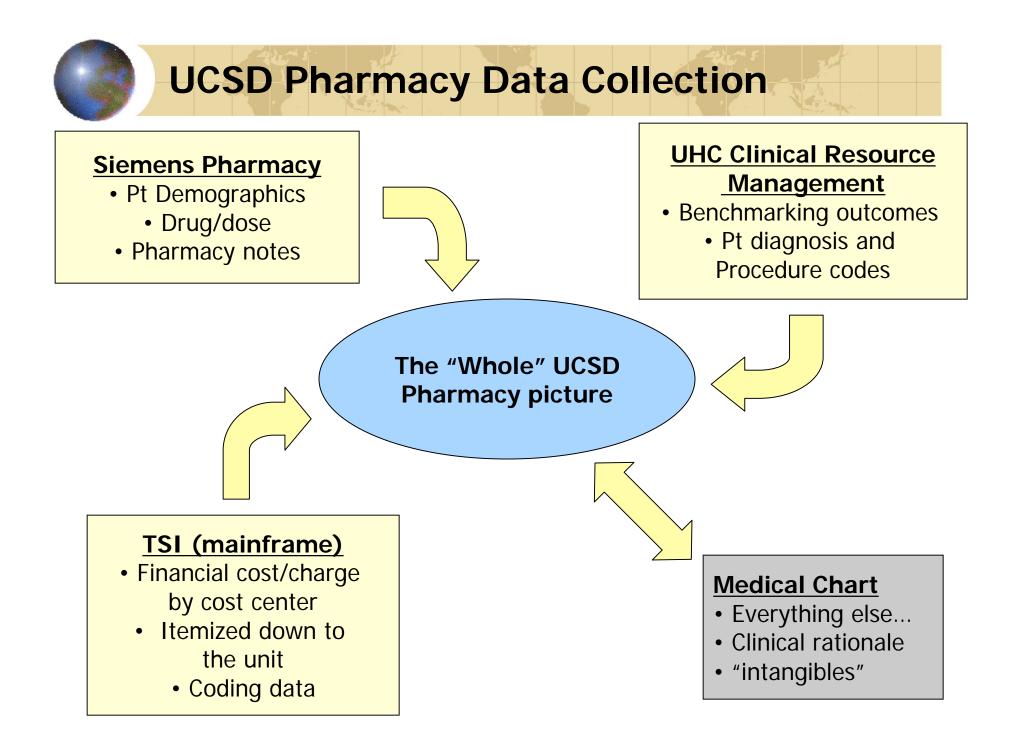


Welcome!

- American hospitals crawling towards Electronic Medical Records (EMR) and Computerized Physician Order Entry (CPOE)
 Still <10% of US Hospitals
- Must reconcile different information systems to exchange data accurately and efficiently
- Benefits of complete patient data records can be huge
 - Speakers to address benefits at various levels of healthcare administration


UCSD Medical Center: Database Driven Decisions

Robert Schoenhaus, Pharm.D. Pharmacoeconomics Specialist MUE Coordinator

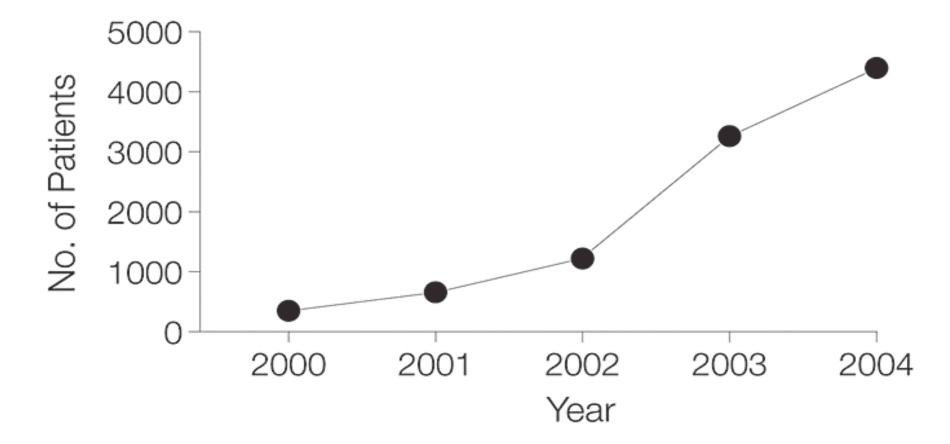
Objectives

- Describe limitations of data decision support at a single academic medical center
- Demonstrate value of coordinated data to drive appropriate patient care through informed decision making
- Review case examples of UCSD medication use evaluations that incorporated patient outcomes taken from several databases

Data Capture

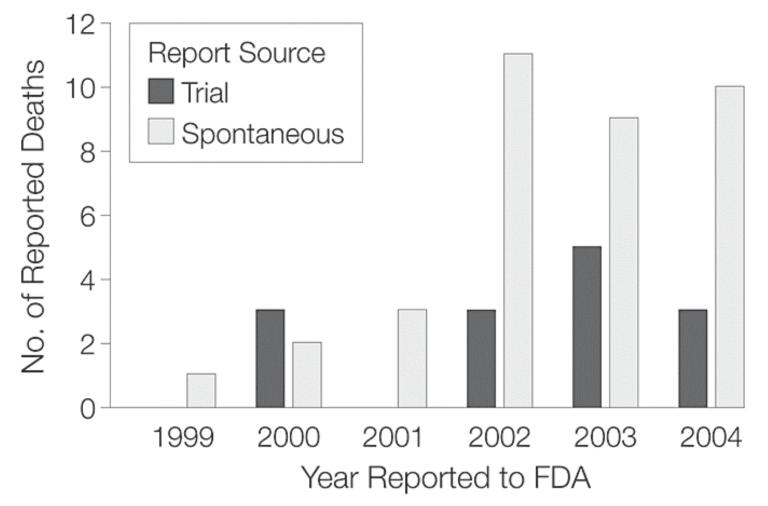
A Single Center Experience with Recombinant Factor VIIa in Orthotopic Liver Transplantation

Robert Schoenhaus Pharm.D, Linda Awdishu BScPhm, MAS; Sam Martinez Pharm.D, Marquis Hart MD, Thomas Lane MD; UC San Diego Medical Center

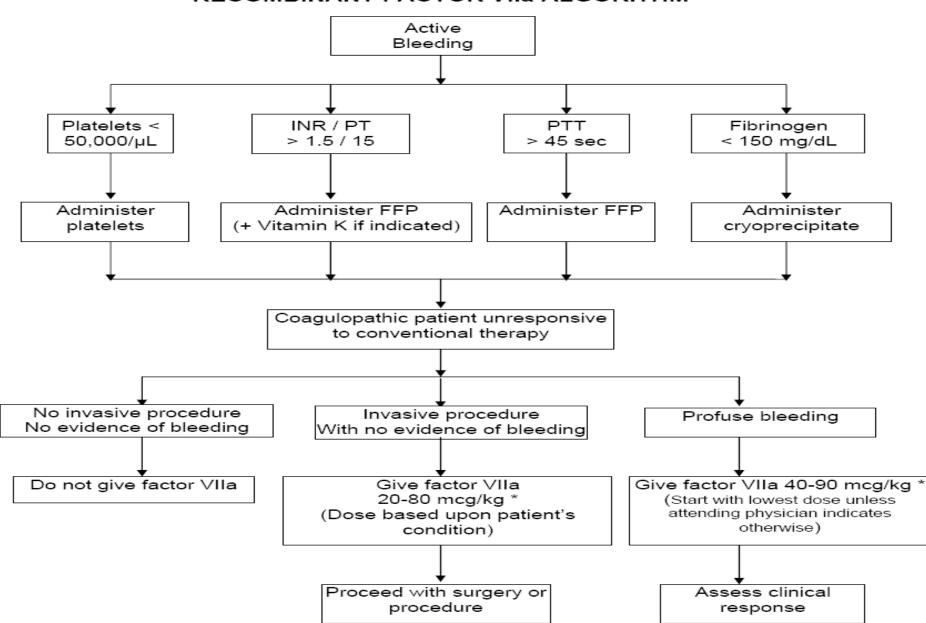


Introduction

- Options for treatment of blood loss during liver transplantation:
 - Packed red blood cells
 - Platelets
 - Fresh frozen plasma
 - Cryoprecipitate
 - 🛚 Vitamin K
 - Factor VIIa ?


Estimated Number of Patients Treated With Recombinant Human Coagulation Factor VIIa by Year

O'Connell, K. A. et al. JAMA 2006;295:293-298.


Number of Reported Deaths Among Patients Administered Human Coagulation Factor VIIa With a Thromboembolic Event by Year

O'Connell, K. A. et al. JAMA 2006;295:293-298.

Comparison of Published Literature

Parameter	Lodge et al (N = 82) (Control versus treatment)	De Gasperi et al (N = 12) (Control versus treatment)	Planinsic et al (N = 183) (Control versus treatment)
Estimated Blood Loss (mL)	NR	3,500 vs. 1,800	NR
Packed Red Cells (units)	8.2 vs. 7	7 vs. 9	11.1 vs. 13
Fresh Frozen Plasma (units)	11 vs. 9.4	21 vs 17	11 vs 15.5
Platelets	141 ml vs 81.8 ml	2.6 units vs 1.5 units	4 units vs 9 units

UCSD Medical Center RECOMBINANT FACTOR VIIa ALGORITHM

Study Objectives

- Investigate use of factor VIIa in orthotopic liver transplant patients
- Determine if factor VIIa reduces blood product requirements and operating room time in orthotopic liver transplant (OLT) patients
- Alter UCSDMC guidelines if needed

Study Design

- Retrospective, single center study
- Inclusion:
 - Patients receiving an OLT
- Exclusion:
 - Patients less than 18 years of age
 - Retransplantation
 - Multi-organ transplants
 - ECMO patients
- Data collected from patients admitted between January 2003-November 2006
 - Analyzed 119 patients

Model for End Stage Liver Disease (MELD)

- Numerical scale from <u>6 (less ill)</u> to <u>40 (more</u> <u>ill)</u> that determines the severity of illness for a patient with end stage liver disease based on the following variables
 - > INR
 - ➢ Bilirubin
 - ➤ Creatinine

Methods

Data collected

- Estimated blood loss (EBL) during transplantation
- Blood product administered (in the OR and at 24 hrs)
- Operating room time (warm ischemia time, cold ischemia time)
- CBC, chemistries, coagulation studies from the
 24h preceding OLT through 24h after OLT

Methods

- Cost Analysis:
 - Total cost of care is assessed based on:
 - Accommodations cost
 - Pharmacy cost
 - Laboratory cost
 - Blood cost
 - Radiology cost
 - Operating room cost (billed by minute)
 - Transplant (organ) cost

Data Capture (FVIIa)

Statistics

- Primary Outcome
 - Log transformation for blood products (non-normal distribution)
 - T-test for two independent samples
- Secondary Outcomes
 - Length of stay
 - Mann Whitney Test for two samples
 - Total Costs
 - Mann Whitney Test for two samples

Baseline Characteristics

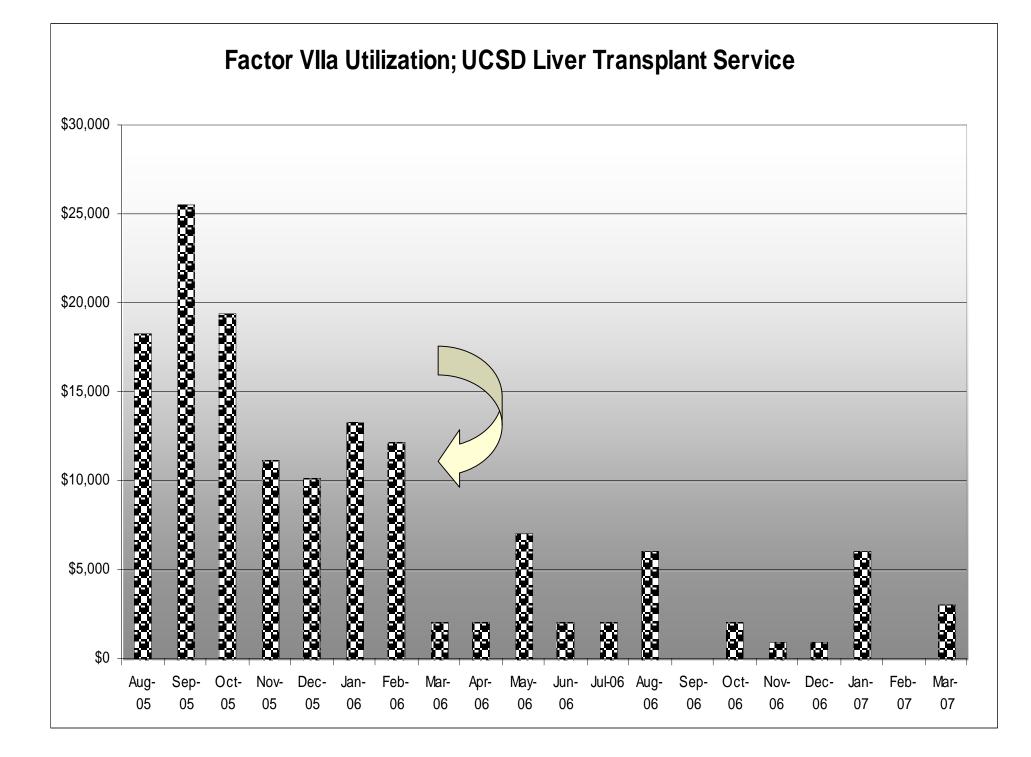
	Control Group (N=51)	Factor VIIa Group (N=68)
Male	68%	63%
Median Age (years)	51 (25-67)	52 (25-68)
Median Weight (kg)	83 (43-122)	80 (49-145)
Median pre-op MELD	16.9 (6-35)	15.9 (6-40)
Median pre-op INR	1.5 (0.9-2.6)	1.4 (0.8-6.5)

Primary Outcomes

Variable	Control (units)	Factor 7a (units)	P Value
Mean PRBC	13.4 ± 14.3	13.8 ± 19.5	
Mean logPRBC	2.2	2.1	0.66
Mean FFP	15.6 ± 20.5	11.3 ± 13.4	
Mean Log FFP	2.4	2.2	0.36
Mean PLT	6.6 ± 10	4 ± 3.5	
Mean LogPLT	1.6	1.3	0.7

Secondary Outcomes

Variable	Control	Factor 7a	P value
Median LOS	10 days (1 - 55)	12 days (0 - 298)	0.46
Median Blood Costs	\$5,954 (\$517- 42,254)	\$6,154 (\$563 - 55,742)	0.79
Median Surgical Costs	\$6,821 (\$1088 - 19,756)	\$6,667 (\$541 - 27,509)	0.85
Median Total Costs	\$57,279 (\$33,096 - 166,673)	\$55,811 (\$32,567 - 479,735)	0.89


Results

Thrombosis events
2 thrombosis events in factor 7a group
1 thrombosis event in control group
Factor 7a Dose
Median dose 1.7 mg (0.6 - <u>8.4</u>)

Conclusions

- The use of factor VIIa appears to not have a significant effect on the amount of red blood cells used
- The results are consistent with the currently available literature that the use of factor VIIa does not provide a benefit in reduction of blood product usage
- No difference between blood product cost, surgical costs or total cost of care

The Use and Outcomes of Antifibrinolytic Therapy in Cardiothoracic Surgery Patients at 20 US Academic Medical Centers

Robert Schoenhaus PharmD, Jim Lane PharmD; UC San Diego Medical Center

Karl Matuszewski PharmD, Mary Ellen Bonk PharmD, Michael J. Oinonen PharmD, MPH; University HealthSystem Consortium

Background

- Impaired hemostasis and blood loss is of concern in patients undergoing cardiac surgery
- Antifibrinolytics (Aprotinin, Aminocaproic Acid and Tranexamic Acid)
 - Safety questioned
 - Mangano DT, et al. The Risk Associated with Aprotinin in Cardiac Surgery. *NEJM*. 2006;354(4): 353-365. (increased risk of adverse renal, cardiovascular, and cerebrovascular events)
 - September 27, 2006, Bayer Pharmaceuticals told FDA that use of Trasylol may increase the chance for death, serious kidney damage, congestive heart failure and strokes
- Our objective was to examine these findings using a larger, more recent dataset from a database of academic medical centers across the US

Methods

Data Source

- University HealthSystem Consortium's Clinical Resource Manager Database
 - Quarterly data feeds of administrative data from 50+ academic medical centers

Inclusion Criteria

Patients discharged between October 2002 and September 2005 within UHC's Cardiothoracic Surgery (CTS) product line [Diagnostic Related Groups of cardiac surgery in nature (i.e., CABG, Valve, etc)]

Exclusion

Patients receiving multiple AF agents

□ All tranexamic acid pts (only 17 pts from 4 total hospitals)

Three Groups

- □ Aminocaproic Acid (AA) n = 9,751 pts
- \Box Aprotinin (AP) n = 6,855
- □ No AF agent/control n = 46,123 pts

Methods, Cont'

Elements Collected

- Demographics (i.e. age, gender, race, etc)
- Comorbidities (Flagged by Comorbidity Software Version 3.1, Agency for HealthCare Research and Quality)

Hypertension

Diabetes (250.00-250.33, 648.00-648.04, not in DRG 294, 295)

Diabetes w/CC (250-40-250.93, 775.1, not in DRG 294, 295)

Peripheral Vascular Disease

- □ Ace inhibitor utilization
- Outcomes
 - □ In-hospital mortality
 - □ Hemodialysis (procedure code 39.95)
 - □ Acute renal failure (diagnosis code 584.x)
 - □ Blood Transfusions (procedure code 99.0X)
 - Post-op Stroke (UHC complication profiler, post-op CVA secondary diagnosis without a nervous system DRG assignment)

Initial Screen for Differences

Logistic regression with control for influential variables:

Demographics	Comorbidities		
Age	ACEI use		
Sex	Diabetes		
Race	Diabetes_cc		
	HTN		
	PVD		
	Renal failure		

Patient Count

- All CTS patients
 - Aprotinin (N = 6,855)
 - Aminocaproic acid (N = 9,751)
 - Control (N = 46,123)

CABG only

Aprotinin (N = 3,066)
Aminocap (N = 7,064)
Control (N = 6,879)

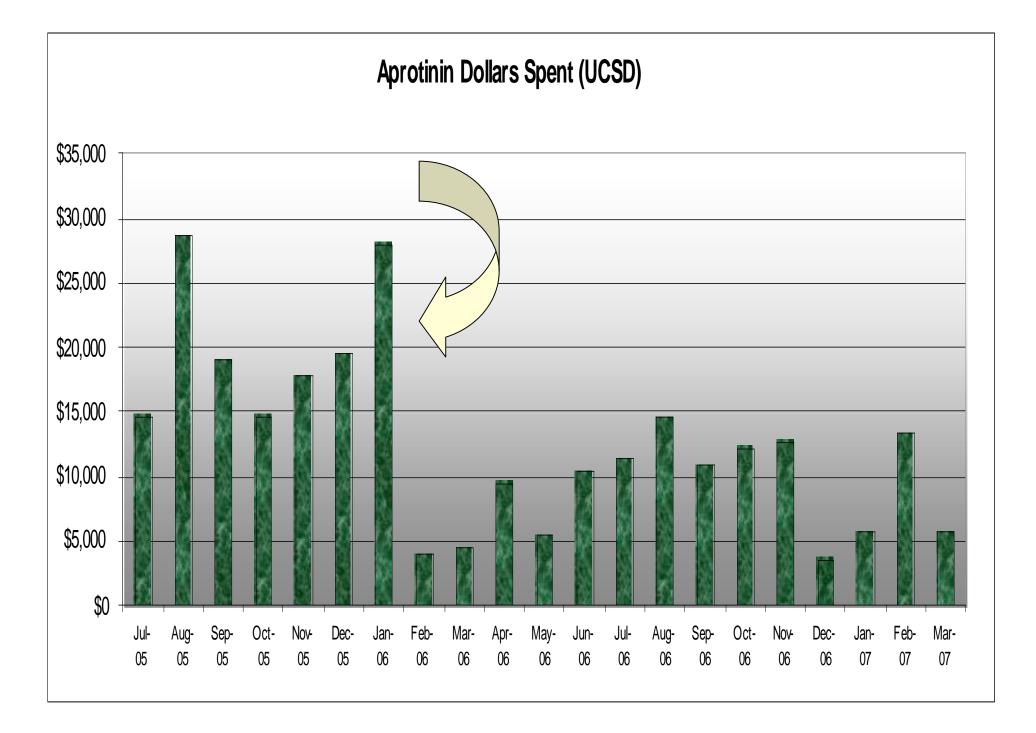
Results

- Blood Transfusions
- Acute Renal Failure
- Hemodialysis
- Post-OP Stroke
- Mortality

Efficacy

Blood Transfusions	P value	Odds Ratio	95% Confidence Limits	
<u>All CTS Pts</u> Aprotinin vs. Aminocap	P = 0.966	0.999	0.934	1.068
<u>CABG only</u> Aprotinin vs. Aminocap	P = 0.0288	0.906	0.830	0.990

Acute Renal Failure Secondary ICD-9 Diagnosis = 584.X	P value	Odds Ratio	95% Confidence Limits	
All CTS Pts Aminocap vs. Control	P < 0.2055	1.069	0.964	1.187
<u>All CTS Pts</u> Aprotinin vs. Control	P < 0.0001	2.291	2.088	2.515
<u>All CTS Pts</u> Aprotinin vs. Aminocap	P < 0.0001	2.056	1.827	2.313
CABG only Aminocap vs. Control	P < 0.0029	0.809	0.703	0.930
<u>CABG only</u> Aprotinin vs. Control	P < 0.0001	1.656	1.428	1.922
CABG only Aprotinin vs. Aminocap	P < 0.0001	2.038	1.746	2.378


Hemodialysis Secondary ICD-9 procedure = 39.95	P value	Odds Ratio	95% Confidence Limits	
All CTS Pts Aminocap vs. Control	P < 0.1142	1.119	0.973	1.287
<u>All CTS Pts</u> Aprotinin vs. Control	P < 0.0001	3.034	2.691	3.420
All CTS Pts Aprotinin vs. Aminocap	P < 0.0001	2.709	2.296	3.196
CABG only Aminocap vs. Control	P < 0.0008	0.693	0.560	0.858
<u>CABG only</u> Aprotinin vs. Control	P < 0.0001	2.378	1.935	2.921
<u>CABG only</u> Aprotinin vs. Aminocap	P < 0.0001	3.406	2.734	4.244

Mortality (In Hospital)	P value	Odds Ratio	95% Confidence Limits	
All CTS Pts Aminocap vs. Control	P < 0.0041	0.801	0.689	0.932
<u>All CTS Pts</u> Aprotinin vs. Control	P < 0.0003	1.271	1.116	1.448
<u>All CTS Pts</u> Aprotinin vs. Aminocap	P < 0.0001	1.775	1.490	2.115
CABG only Aminocap vs. Control	P < 0.0206	0.766	0.612	0.960
<u>CABG only</u> Aprotinin vs. Control	P < 0.0005	1.496	1.192	1.878
<u>CABG only</u> Aprotinin vs. Aminocap	P < 0.0001	1.969	1.547	2.507

Post-Op Stroke	P value	Odds Ratio	95% Confidence Limits	
All CTS Pts Aminocaproic Acid vs. control	P < 0.0001	2.866	2.336	3.518
<u>All CTS Pts</u> Aprotinin vs. control	P < 0.0001	4.123	3.345	5.083
All CTS Pts Aprotinin vs. Aminocap	P = 0.0006	1.506	1.191	1.905
CABG only Aminocaproic vs. control	P = 0.0012	1.722	1.240	2.392
<u>CABG only</u> Aprotinin vs. control	P < 0.0001	2.177	1.502	3.155
<u>CABG only</u> Aprotinin vs. AA	P = 0.1331	1.290	0.925	1.798

Conclusions

 Aprotinin appeared to have superiority for reducing blood transfusions in CABG population, but was strongly correlated with negative outcomes: ARF, hemodialysis, and mortality
 Similar to Bayer findings (exc. CHF)

Questions?